Use of Prior Knowledge in a Non-Gaussian Method for Learning Linear Structural Equation Models

نویسندگان

  • Takanori Inazumi
  • Shohei Shimizu
  • Takashi Washio
چکیده

We discuss causal structure learning based on linear structural equation models. Conventional learning methods most often assume Gaussianity and create many indistinguishable models. Therefore, in many cases it is difficult to obtain much information on the structure. Recently, a non-Gaussian learning method called LiNGAM has been proposed to identify the model structure without using prior knowledge on the structure. However, more efficient learning can be achieved if some prior knowledge on a part of the structure is available. In this paper, we propose to use prior knowledge to improve the performance of a state-ofart non-Gaussian method. Experiments on artificial data show that the accuracy and computational time are significantly improved even if the amount of prior knowledge is not so large.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model

Structural equation models and Bayesian networks have been widely used to analyze causal relations between continuous variables. In such frameworks, linear acyclic models are typically used to model the data-generating process of variables. Recently, it was shown that use of non-Gaussianity identifies the full structure of a linear acyclic model, that is, a causal ordering of variables and thei...

متن کامل

Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity

Analysis of causal effects between continuous-valued variables typically uses either autoregressive models or structural equation models with instantaneous effects. Estimation of Gaussian, linear structural equation models poses serious identifiability problems, which is why it was recently proposed to use non-Gaussian models. Here, we show how to combine the non-Gaussian instantaneous model wi...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Linear non-Gaussian causal discovery from a composite set of major US macroeconomic factors

In this paper, we develop an effective approach to model linear non-Gaussian causal relationships among a composite set of major US macroeconomic factors. The proposed approach first models the linear relationships of the factors using the Vector Autoregression (VAR) model, then the casual relationships are discovered using the linear non-Gaussian Structural Equation Modeling (SEM) method. One ...

متن کامل

Academic Language Achievement: A Structural Equation Model of the Impact of Teacher-Student Interactions and Self-Regulated Learning

A correlational survey research design was utilized to investigate self-regulated Learning (SRL) and teacher-student interaction factors that had been realized to have contributive roles in EFL learners' academic success.  A sample of 218 EFL learners (male = 102 and female = 116) was drawn with the aid of a prior sample size calculator for the structural equation models from 645 students. They...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010